Structural and functional evolution of isopropylmalate dehydrogenases in the leucine and glucosinolate pathways of Arabidopsis thaliana.

نویسندگان

  • Yan He
  • Ashley Galant
  • Qiuying Pang
  • Johanna M Strul
  • Sherifat F Balogun
  • Joseph M Jez
  • Sixue Chen
چکیده

The methionine chain-elongation pathway is required for aliphatic glucosinolate biosynthesis in plants and evolved from leucine biosynthesis. In Arabidopsis thaliana, three 3-isopropylmalate dehydrogenases (AtIPMDHs) play key roles in methionine chain-elongation for the synthesis of aliphatic glucosinolates (e.g. AtIPMDH1) and leucine (e.g. AtIPMDH2 and AtIPMDH3). Here we elucidate the molecular basis underlying the metabolic specialization of these enzymes. The 2.25 Å resolution crystal structure of AtIPMDH2 was solved to provide the first detailed molecular architecture of a plant IPMDH. Modeling of 3-isopropylmalate binding in the AtIPMDH2 active site and sequence comparisons of prokaryotic and eukaryotic IPMDH suggest that substitution of one active site residue may lead to altered substrate specificity and metabolic function. Site-directed mutagenesis of Phe-137 to a leucine in AtIPMDH1 (AtIPMDH1-F137L) reduced activity toward 3-(2'-methylthio)ethylmalate by 200-fold, but enhanced catalytic efficiency with 3-isopropylmalate to levels observed with AtIPMDH2 and AtIPMDH3. Conversely, the AtIPMDH2-L134F and AtIPMDH3-L133F mutants enhanced catalytic efficiency with 3-(2'-methylthio)ethylmalate ∼100-fold and reduced activity for 3-isopropylmalate. Furthermore, the altered in vivo glucosinolate profile of an Arabidopsis ipmdh1 T-DNA knock-out mutant could be restored to wild-type levels by constructs expressing AtIPMDH1, AtIPMDH2-L134F, or AtIPMDH3-L133F, but not by AtIPMDH1-F137L. These results indicate that a single amino acid substitution results in functional divergence of IPMDH in planta to affect substrate specificity and contributes to the evolution of specialized glucosinolate biosynthesis from the ancestral leucine pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Small Subunit 1 of the Arabidopsis Isopropylmalate Isomerase Is Required for Normal Growth and Development and the Early Stages of Glucosinolate Formation

In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI), an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large an...

متن کامل

Functional specification of Arabidopsis isopropylmalate isomerases in glucosinolate and leucine biosynthesis.

The Arabidopsis genome encodes one potential isopropylmalate isomerase (IPMI) large subunit and three potential IPMI small subunits, which in bacteria and archaea form heterodimers to catalyze the isomerization of 2-isopropylmalate to 3-isopropylmalate in leucine biosynthesis. We demonstrate here that AtLeuC physically interacts with AtLeuD proteins to form functional IPMIs. The IPMIs are local...

متن کامل

Integrated Proteomics and Metabolomics of Arabidopsis Acclimation to Gene-Dosage Dependent Perturbation of Isopropylmalate Dehydrogenases

Maintaining metabolic homeostasis is critical for plant growth and development. Here we report proteome and metabolome changes when the metabolic homeostasis is perturbed due to gene-dosage dependent mutation of Arabidopsis isopropylmalate dehydrogenases (IPMDHs). By integrating complementary quantitative proteomics and metabolomics approaches, we discovered that gradual ablation of the oxidati...

متن کامل

Cloning of cDNAs encoding isopropylmalate dehydrogenase from Arabidopsis thaliana and accumulation patterns of their transcripts.

Isopropylmalate dehydrogenase (IPMDH) is an enzyme in the leucine biosynthetic pathway. We isolated three IPMDH ORF sequences from Arabidopsis thaliana, and genes corresponding to these ORF sequences were designated AtIMD1, AtIMD2, and AtIMD3. Deduced amino acid sequences of the three genes contain a putative transit-peptide for plastidic localization. AtIMD1, AtIMD2, and AtIMD3 were able to co...

متن کامل

From Amino Acid to Glucosinolate Biosynthesis: Protein Sequence Changes in the Evolution of Methylthioalkylmalate Synthase in Arabidopsis W OA

Methylthioalkylmalate synthase (MAM) catalyzes the committed step in the side chain elongation of Met, yielding important precursors for glucosinolate biosynthesis in Arabidopsis thaliana and other Brassicaceae species. MAM is believed to have evolved from isopropylmalate synthase (IPMS), an enzyme involved in Leu biosynthesis, based on phylogenetic analyses and an overlap of catalytic abilitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 33  شماره 

صفحات  -

تاریخ انتشار 2011